Identification of novel insulin mimetic drugs by quantitative total internal reflection fluorescence (TIRF) microscopy

نویسندگان

  • Peter Lanzerstorfer
  • Verena Stadlbauer
  • Lilia A Chtcheglova
  • Renate Haselgrübler
  • Daniela Borgmann
  • Jürgen Wruss
  • Peter Hinterdorfer
  • Klaus Schröder
  • Stephan M Winkler
  • Otmar Höglinger
  • Julian Weghuber
چکیده

BACKGROUND AND PURPOSE Insulin stimulates the transport of glucose in target tissues by triggering the translocation of glucose transporter 4 (GLUT4) to the plasma membrane. Resistance to insulin, the major abnormality in type 2 diabetes, results in a decreased GLUT4 translocation efficiency. Thus, special attention is being paid to search for compounds that are able to enhance this translocation process in the absence of insulin. EXPERIMENTAL APPROACH Total internal reflection fluorescence (TIRF) microscopy was applied to quantify GLUT4 translocation in highly insulin-sensitive CHO-K1 cells expressing a GLUT4-myc-GFP fusion protein. KEY RESULTS Using our approach, we demonstrated GLUT4 translocation modulatory properties of selected substances and identified novel potential insulin mimetics. An increase in the TIRF signal was found to correlate with an elevated glucose uptake. Variations in the expression level of the human insulin receptor (hInsR) showed that the insulin mimetics identified stimulate GLUT4 translocation by a mechanism that is independent of the presence of the hInsR. CONCLUSIONS AND IMPLICATIONS Taken together, the results indicate that TIRF microscopy is an excellent tool for the quantification of GLUT4 translocation and for identifying insulin mimetic drugs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Total internal reflection fluorescence flow cytometry.

Total internal reflection fluorescence microscopy (TIRFM) has been widely used to explore biological events that are close to the cell membrane by illuminating fluorescent molecules using the evanescent wave. However, TIRFM is typically limited to the examination of a low number of cells, and the results do not reveal potential heterogeneity in the cell population. In this report, we develop an...

متن کامل

Imaging docking and fusion of insulin granules induced by antidiabetes agents: sulfonylurea and glinide drugs preferentially mediate the fusion of newcomer, but not previously docked, insulin granules.

Sulfonylurea and glinide drugs, commonly used for antidiabetes therapies, are known to stimulate insulin release from pancreatic beta-cells by closing ATP-sensitive K+ channels. However, the specific actions of these drugs on insulin granule motion are largely unknown. Here, we used total internal reflection fluorescence (TIRF) microscopy to analyze the docking and fusion of single insulin gran...

متن کامل

A Thin Layer Imaging with the Total Internal Reflection Fluorescence Microscopy

Total internal reflection fluorescence microscopy (TIRFM) is an optical technique that allows imaging of a thin layer of the sample with a thickness of about 100-200 nm. It is used in science of cell biology to study cellular processes, especially near the membranes of living cells. This method is based on the total internal reflection phenomenon, where the evanescent wave is generated in the l...

متن کامل

Total internal reflection fluorescence (TIRF) microscopy illuminator for improved imaging of cell surface events.

Total internal reflection fluorescence (TIRF) microscopy is a high-contrast imaging technique suitable for observing biological events that occur on or near the cell membrane. The improved contrast is accomplished by restricting the thickness of the excitation field to over an order of a magnitude narrower than the z-resolution of an epi-fluorescence microscope. This technique also increases si...

متن کامل

Quantifying Exocytosis by Combination of Membrane Capacitance Measurements and Total Internal Reflection Fluorescence Microscopy in Chromaffin Cells

Total internal reflection fluorescence microscopy (TIRF-Microscopy) allows the observation of individual secretory vesicles in real-time during exocytosis. In contrast to electrophysiological methods, such as membrane capacitance recording or carbon fiber amperometry, TIRF-Microscopy also enables the observation of vesicles as they reside close to the plasma membrane prior to fusion. However, T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 171  شماره 

صفحات  -

تاریخ انتشار 2014